

## **Extensions and Alterations Guidance Booklet**

## for the new Building Regulations coming into effect in June 2022



**Colchester Borough Council** 

www.colchester.gov.uk

The new Building Regulations will come into force for applications made on or after 15 June 2022. The new requirements will not apply to applications made prior to June 15 providing <u>substantial</u> building work has begun before 15 June 2023 on all aspects of the application. This gives 1 year's grace to allow commencement. (Note: jobs need <u>substantial</u> start i.e., foundations excavated and poured.)

| Office Contact |                                    |  |
|----------------|------------------------------------|--|
| Email          | buildingcontrol@colchester.gov.uk  |  |
| Phone          | 01206 282436                       |  |
| Fee Quotes     | laurie.sheldrake@colchester.gov.uk |  |
| Website        | www.colchester.gov.uk              |  |

| Officers Contacts |                           |                                    |
|-------------------|---------------------------|------------------------------------|
| Tony Tarran       | Building Control Manager  | 01206 508644                       |
|                   |                           | 07710 156072                       |
|                   |                           | tony.tarran@colchester.gov.uk      |
| Mark Wendon       | Building Control Surveyor | 01206 282431                       |
|                   | (Area 1 North West)       | 07710 154772                       |
|                   |                           | mark.wendon@colchester.gov.uk      |
| Roy Thomson       | Building Control Surveyor | 01206 506025                       |
|                   | (Area 2&5 Northeast)      | 07866 555716                       |
|                   |                           | roy.thomson@colchester.gov.uk      |
| David Gowers      | Building Control Surveyor | 01206 508644                       |
|                   | (Area 3 South West)       | 07710 154769                       |
|                   |                           | david.gowers@colchester.gov.uk     |
| Hayley Caunt      | Building Control Surveyor | 01206 508744                       |
|                   | (Area 4 South East)       | 07976 794909                       |
|                   |                           | hayley.caunt@colchester.gov.uk     |
| Laurie Sheldrake  | Technical Assistant       | 01206 508733                       |
|                   |                           | laurie.sheldrake@colchester.gov.uk |

### Any requests for site inspections should be made by calling 01206 282436 before 4pm for an inspection the following working day.

# Approved Document L & F - some of the main changes as of June 2022

#### Approved Document L – Extensions & Alterations noteworthy changes

- New thermal elements, replacement thermal elements and glazing need to meet new U-Values. (Table 4.2, paragraph 4.7 in Part L)
- >25% max glazing for the floor area of extensions including covering existing controlled openings still applies however is slightly stricter. Once over 25%, SAP calculations required or Area weighted U-value, possibly specifying a higher U-Value than Part L depicts. Highly glazed extensions will require design calculations prior to starting works. This also includes new glazing in existing buildings, extending openings for Bi folds etc. if exceeding 25% glazing of the total floor area of the dwelling. (Paragraph 10.10 in Part L)
- Boiler efficiency should be assessed when extending the heating system and upgrading the system may be required to a **92% efficient boiler**. Electric radiators or electric underfloor heating will likely become an alternative for those not wanting to upgrade but the running cost is likely more. (Table 6.2 in Part L)
- Renovating thermal elements still applies but with more clarification. Most U-values stay the same however replacing a flat roof membrane will require insulation upgrades. (Paragraph 11.2 in Part L)

#### Approved Document F – Extensions & Alterations noteworthy changes

- Night latches cannot be used in place of trickle vents. (Part F, paragraph 1.52)
- Open plan kitchen diners need minimum of 3 trickle vents in a room (8000mm<sup>2</sup> each). (Part F, Paragraph 1.52)
- Minimum requirement for trickle vents now 8000mm<sup>2</sup> for habitable rooms or 10,000mm2 for single storey dwellings. (Part F Table 1.7)
- Exposed Façades in busy areas (main road etc) will require noise attenuating trickle vents. (Paragraph 1.54 Part F)
- Existing home ventilation guides required to be given to the homeowner by the builder. (Explaining how to use and ventilate efficiently etc) (Paragraph 4.20 Part F)
- All replacement windows must have trickle vents regardless of if the previous windows did not. (Paragraph 3.15)
- Energy efficiency measures in existing homes means the ventilation of dwelling will be assessed. Doing multiple minor works (Insulating lofts, replacing loft hatches etc.) or major work (bricking up chimneys, installing internal wall insulation etc.) will now require ventilation retrospectively and in some cases, you will require a ventilation report to specify new ventilation requirements. In most cases retrofitting trickle vents will be an adequate method. (Table 3.1, para 3.6-3.13)

## U-Value Table highlighting changes as of June 2022

Note: New thermal elements may need higher values if more than 25% of the floor area of the extension is glazing.

## Table 1: Part L 2022 Limiting U-Values for Extensions & Alterations todwellings

| Thermal Element                          | Old U-Value             | New U-Value                                                              |
|------------------------------------------|-------------------------|--------------------------------------------------------------------------|
| New Floors                               | 0.22 W/m <sup>2</sup> K | 0.18 W/m²K                                                               |
| Retained Floors                          | 0.25 W/m <sup>2</sup> K | 0.25 W/m²К                                                               |
| New Cavity Walls                         | 0.28 W/m <sup>2</sup> K | 0.18 W/m²K                                                               |
| Retained Cavity Walls                    | 0.55 W/m²K              | 0.55 W/m²K                                                               |
| Retained Solid Walls 9"<br>(225mm)       | 0.3 W/m²K               | 0.3 W/m²K                                                                |
| Retained Single Skin Walls<br>4" (102mm) | 0.3 W/m <sup>2</sup> K  | 0.3 W/m²K                                                                |
| Timber Frame Walls                       | 0.28 W/m <sup>2</sup> K | 0.18 W/m²K                                                               |
| Pitched Roof (Flat Ceiling)              | 0.16 W/m <sup>2</sup> K | 0.15 W/m²K                                                               |
| Pitched Roof (Vaulted<br>Ceiling)        | 0.18 W/m <sup>2</sup> K | 0.15 W/m²K                                                               |
| Flat Roof (Cold Deck)                    | 0.18 W/m <sup>2</sup> K | 0.15 W/m²K                                                               |
| Flat Roof (Warm Deck)                    | 0.18 W/m²K              | 0.15 W/m²K                                                               |
| Retained Roof Upgrades                   |                         |                                                                          |
| Flat Roof                                | 0.18 W/m <sup>2</sup> K | 0.16 W/m <sup>2</sup> K                                                  |
| Flat Ceiling                             | 0.16 W/m <sup>2</sup> K | 0.16 W/m <sup>2</sup> K                                                  |
| Vaulted                                  | 0.18 W/m <sup>2</sup> K | 0.16 W/m <sup>2</sup> K                                                  |
| Windows                                  | 1.6 W/m²K               | 1.4 W/m²K                                                                |
| External Doors >60% Glazing              | 1.8 W/m²K<br>Band E     | 1.4 W/m <sup>2</sup> K<br>Band C                                         |
|                                          |                         | -                                                                        |
| Other External Doors                     | 1.8 W/m <sup>2</sup> K  | 1.4 W/m <sup>2</sup> K                                                   |
|                                          | Band E                  | Band B                                                                   |
| Roof Light                               | 1.6 W/m <sup>2</sup> K  | <b>2.2 W/m<sup>2</sup>K</b> (New method of calculating so appears worse) |

### **Ground floor U-Value guidance - Extensions and alterations**

Below is a table of examples of insulation products that can be used to achieve the new U-Values in Approved Document L as of June 2022.

This is based upon traditional oversites and beam and block floors with a P/A ratio of 1, insulation thickness may be reduced if the P/A ratio is lower, but calculations may be required.

The values below will suffice in most circumstances, with insulation either above or below the concrete slab and in floating floor scenarios.

### Table 2: Maximum U-value now required 0.18W/m²K

| Product               | Thickness    |
|-----------------------|--------------|
| Celotex GA4000        | 100mm        |
| Recticel Eurothane Gp | 100mm        |
| Jabfloor insulation   | 100mm + 60mm |
| Ecotherm Eco-Versal   | 100mm        |
| Kingspan K103         | 100mm        |

Note: To offset additional glazing, PIR insulation thickness in the floor is more likely to be specified / required to be **150mm on most jobs**. This is because its more cost effective to increase floor insulation rather than increasing the wall thickness. Timber floors may be better insulated as a floating floor however for insulating between joists see examples below.

## Table 3: Examples of suspended timber floor – Maximum U-value now required 0.18W/m<sup>2</sup>K

| Option 1                           | Option 2                            |
|------------------------------------|-------------------------------------|
| Celotex XR4000 150mm between 150mm | Rockwool Flexi 200mm between timber |
| Timber Joists at 400cc             | joists. 200mm Joists required       |

### **Cavity Wall Guidance – Extensions and alterations**

Below are tables of examples of insulation products that can be used to achieve the new U-Values in Approved Document L as of June 2022.

This is based on a 'standard' cavity construction wall detail with a brick outer leaf and a block inner leaf. In most instances the cavity will now be greater than 100mm unless a suitable PIR cavity insulation board is used.

Please see key for ease - this includes some but not all products that can be used. specialist advice from architects, energy assessors and manufacturers may be required.

## Table 4: Examples of cavity wall construction – Maximum U-Value now required 0.18W/m<sup>2</sup>K

| Cavity width | Detail                                                                        |
|--------------|-------------------------------------------------------------------------------|
| 100mm        | Brickwork, 100mm cavity full fill PIR insulation with a thermal               |
|              | conductivity of <b>0.021 W/mK</b> , 100 blockwork inner leaf with a thermal   |
|              | conductivity of <b>0.15 W/mK</b> 12.5mm plasterboard finish.                  |
| 100mm        | Brickwork, 100mm cavity full fill mineral wool insulation with a thermal      |
|              | conductivity 0.032 W/mK , 100 mm blockwork with a thermal                     |
|              | conductivity of <b>0.15 W/mK</b> and a 52.2 insulated PIR plasterboard finish |
|              | (40mm PIR + 12.5mm plasterboard).                                             |
| 150mm        | Brickwork, 150mm cavity full fill mineral wool insulation with a thermal      |
|              | conductivity 0.032 W/mK, 100 mm blockwork with a thermal                      |
|              | conductivity of <b>0.15 W/mK</b> 12.5mm plasterboard finish.                  |
| 150mm        | Brickwork, 150mm cavity full fill mineral wool insulation with a thermal      |
|              | conductivity 0.032 W/mK, 150 mm blockwork with a thermal                      |
|              | conductivity of <b>0.15 W/mK</b> 12.5mm plasterboard finish.                  |
| 150 mm       | Brickwork, 150mm cavity partial filled with 100mm PIR insulation with         |
|              | thermal conductivity 0.022 W/mK, 150 mm blockwork with a thermal              |
|              | conductivity of <b>0.15 W/mK</b> 12.5mm plasterboard finish.                  |
| 175mm        | Brickwork, 175 mm cavity full fill mineral wool insulation with a thermal     |
|              | conductivity 0.037 W/mK (Knauf/ Dritherm 37) 100 mm blockwork with            |
|              | a thermal conductivity of 0.15 W/mK plasterboard finish.                      |
|              |                                                                               |
| 180mm        | Brickwork, 180mm cavity full fill insulation with Rockwool full fill cavity   |
|              | batts 0.037 W/mK , 100mm of blockwork with a thermal conductivity             |
|              | up to <b>1.130 W/mK</b> (Even dense concrete blocks achieve this).            |

| 0.15W/mK blocks                                                                                                                                               | Cavity insulation                                                                                                                                          | Cavity insulation                                                                                                                                                                          | Cavity insulation                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| or better                                                                                                                                                     | 0.02 W/mK                                                                                                                                                  | 0.032 W/mK                                                                                                                                                                                 | 0.037 W/mK                                             |
| Celcon Solar.<br>Celcon Standard.<br>Durox Supablock<br>Durox SupaBlock 400<br>Thermalite shield<br>Thermalite Turbo<br>Topblok supa bloc<br>Toplite standard | Recticel Euro wall<br>Celotex CW4000<br>All will be PIR partial<br>/ full fill cavity wall<br>systems and<br>workmanship will<br>need to be<br>impeccable. | Dritherm 32 Cavity<br>Batts<br>Please note most<br>other cavity wall<br>insulations do not<br>achieve the same<br>value as Dritherm<br>32, even other<br>Dritherm products<br>like 34 etc. | Rockwool Cavity<br>batts<br>Other Dritherm<br>products |

### Table 5: Key for common construction products used

Note: Denser blocks are sometimes required for structural stability, this often will have a serious effect on the U-Value and will subsequently require insulation upgrades.

### Timber framed wall U-Value guidance – extensions and alterations

Below is a table of examples of insulation products that can be used to achieve the new U-Values in Approved Document L as of June 2022.

This is based on a worst-case scenario with any façade detailing, including a brick outer leaf, blockwork rendered, hanging tiles, timber or cement cladding or a rendered cement board. With a brick or rendered block façade, a better U-Value can typically be achieved meaning less insulation (potentially), but this will need site specific calculations.

| Product                                                                                    | 100mm X 47mm,<br>600crs studs                                                                                                                                   | 150mm x 47mm,<br>600crs                                                                                                       | 200 x 47mm,<br>600crs                                                    |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                            | (4x2" timbers)                                                                                                                                                  | (6x2" timbers)                                                                                                                | (8x2" timbers)                                                           |
| Kingspan Kooltherm<br>K12                                                                  | 70mm between studs +<br>40mm lining, 12.5mm<br>plasterboard                                                                                                     | 100mm between<br>studs + 25mm lining,<br>12.5mm plasterboard                                                                  | Follow 150mm x<br>47mm guidance                                          |
| Celotex GA4000 +<br>TB4000                                                                 | 100mm GA4000<br>between + 50 mm<br>GA4000 lining, 12.5mm<br>plasterboard                                                                                        | 100mm GA4000<br>between + 40 mm<br>TB4000 lining,<br>12.5mm Plasterboard                                                      | 100mm GA4000<br>between + 30 mm<br>TB4000 lining,<br>12.5mm plasterboard |
| Recticel Eurothane GP                                                                      | 100mm between + 50<br>mm insulation over +<br>12.5mm plasterboard                                                                                               | 100mm between + 40<br>mm insulation over +<br>12.5mm plasterboard<br>150mm between +<br>25mm lining, 12.5mm<br>plasterboard   | 100mm Between +<br>30mm lining,<br>12.5mm plasterboard                   |
| Ecotherm Eco-Versal                                                                        | 80mm between +<br>40mm lining, 12.5mm<br>plasterboard                                                                                                           | 100mm between +<br>30mm lining,12.5mm<br>plasterboard                                                                         | See 150mm X 47mm<br>guidance                                             |
| Actis hybris + Actis<br>Hcontrol (Acts as a<br>vapour control barrier<br>also when taped.) | N/A                                                                                                                                                             | 105mm of Hybris Actis<br>between studs +<br>45mm HControl<br>Hybrid quilt lining,<br>counter battened,<br>12.5mm plasterboard | See 150mm x 47mm<br>Guidance                                             |
| Knauf/Rockwool<br>between studs and<br>PIR over                                            | Currently little guidance given. Expected Rockwool flexi 230mm between<br>timber frame. Frame therm exceeding 150mm between studs. Designs<br>will be required. |                                                                                                                               |                                                                          |

# Table 6: Examples of timber framed wall construction – Maximum U-value now required 0.18W/m<sup>2</sup>K

### Flat roof U-Value guidance – Extensions and alterations

#### Warm deck roof

Below is a table of examples of insulation products that can be used to achieve the new U-Values in Approved Document L as of June 2022. This is based on a traditional warm deck build up with all insulation above the flat roof joists which negates the ventilation requirements.

## Table 7: Examples of warm deck flat roofs – Maximum U-value now required 0.15W/m<sup>2</sup>K

| Product                                                  | Thickness |
|----------------------------------------------------------|-----------|
| PIR Insulation with a thermal conductivity of 0.022 W/mK | 150mm     |

#### Cold deck roof

Below is a table of examples of insulation products that can be used to achieve the new U-Values in Approved Document L as of June 2022. This is based on a traditional cold deck build-up of insulation between and below the flat roof joists. This solution will require adequate cross flow ventilation.

The table below assumes, as an example, 150mmx47mm joists with a 50mm ventilation void, and for the purpose of thermal values will suffice in most circumstances.

## Table 8: Examples of cold ventilated flat roofs – Maximum U-value now required 0.15W/m<sup>2</sup>K

| Product             | Joists at 600crs     | Joists at 450crs     | Joists at 400crs     |
|---------------------|----------------------|----------------------|----------------------|
| Kingspan Kooltherm  | 100mm between joists | 100mm between joists | 100mm between joists |
| K7                  | +50mm underlining    | +50mm underlining    | +50mm underlining    |
| Celotex GA4000      | 100mm between joists | 100mm Between joists | 100mm Between joists |
|                     | +60mm underlining    | +70mm underlining    | +70mm underlining    |
| Recticel Eurothane  | 100mm between joists | 100mm between joists | 100mm Between joists |
| GP                  | +70mm underlining    | +70mm underlining    | +75mm underlining    |
| Ecotherm Eco-Versal | 100mm between joists | 100mm between joist  | 100mm between joist  |
|                     | +60mm underlining    | +70mm underlining    | +70mm underlining    |

### **Pitched roof U-Value guidance – Extensions and alterations** Vaulted Ceilings

Below is a table of examples of insulation products that can be used to achieve the new U-Values in Approved Document L as of June 2022.

The table below assumes, as an example, 150mmx47mm rafters with a 50mm ventilation void, thermal values will suffice in most circumstances.

This is based on a pitched roof with a vaulted ceiling (no ceiling joists installed).

## Table 9: Examples of insulation to vaulted ceilings – Maximum U-value now required 0.15W/m<sup>2</sup>K

| Product            | Rafters at     | Rafters at     | Rafters at     |
|--------------------|----------------|----------------|----------------|
|                    | 600mm crs      | 450mm cc       | 400mm cc       |
| Kingspan           | 100 mm between | Follow 400 crs | 100 mm between |
| Kooltherm K7       | rafters + 45mm | guidance       | rafters + 50mm |
|                    | underlining    |                | underlining    |
| Celotex GA4000     | 100 mm between | 100 mm between | 100 mm between |
|                    | rafters + 50mm | rafters + 60mm | rafters + 60mm |
|                    | underlining    | underlining    | underlining    |
| Recticel Eurothane | 100 mm between | 100 mm between | 100 mm between |
| GP                 | rafters + 60mm | rafters + 60mm | rafters + 60mm |
|                    | underlining    | underlining    | underlining    |
| Ecotherm Eco-      | 100 mm between | 100 mm between | 100 mm between |
| Versal             | rafters + 50mm | rafters +60mm  | rafters +60mm  |
|                    | underlining    | underlining    | underlining    |

## Table 10: Examples of other insulation methods for vaulted ceilings – maximum U-value now required 0.15W/m<sup>2</sup>K

| Other Options indictive only.    |                                                                                                                                                                              |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Celotex GA4000                   | Expect 75mm Between rafters and 75mm<br>over rafter's at 400cc. Full design should be<br>sought with condensation risk analysis not<br>all PIR manufactures will allow this. |
| Celotex XR4000                   | Expect 140mm over rafters                                                                                                                                                    |
| TLX Silver with a PIR insulation | Around 130mm of PIR with a TLX silver<br>underneath. Air gaps, timber size and design<br>to be discussed                                                                     |
| TLX Gold                         | 145mm PIR between, TLX gold above rafter, design to be discussed.                                                                                                            |

#### **Flat ceilings**

Below is a table of examples of insulation products that can be used to achieve the new U-Values in Approved Document L as of June 2022.

This is based on the assumption all insulation is laid between and over the ceiling joists.

This is based on a pitched roof construction with a flat ceiling, 147x47mm ceiling joists installed at 600cc.

# Table 11: Examples of insulation to flat ceilings – Maximum U-value now required 0.15W/m<sup>2</sup>K

| Product                                 | Thickness / installation                 |
|-----------------------------------------|------------------------------------------|
| Knauf - glass mineral wool              | 150mm insulation between ceiling joists, |
|                                         | 150mm laid perpendicular over the top,   |
|                                         | 300mm total                              |
| Rockwool – Thermal insulation loft roll | 150mm insulation between ceiling joists, |
|                                         | 150mm laid perpendicular over the top,   |
|                                         | 300mm total                              |
| Celotex GA4000 (Other PIR insulations   | 100mm insulation between joists and 60mm |
| options may differ slightly).           | under+ 12.5mm plasterboard.              |
| Actis Multifoils.                       | HYBRIS 140mm thickness between joists +  |
|                                         | HCONTROL HYBRID 45mm underneath with     |
|                                         | relevant air gaps.                       |

### **Frequently asked questions**

#### Part F

1. Is there a caveat on trickle / background ventilation provision in listed buildings?

Work to listed buildings, buildings in conservation areas and other historic buildings with vapour permeable construction should comply with the standards where reasonably practicable. Work should not unacceptably affect the significance of the listed building, conservation area or historic building or increase the risk of long-term deterioration of the building fabric or fittings.

The Local Authority's conservation officer should be consulted when undertaking work and measures agreed prior to work commencing. See paragraphs 0.5 to 0.8 of the new Approved Document.

#### Part L

2. What are your thoughts on the size of cavities?

It is still possible to construct in masonry and keeping a 100mm cavity although, in most instances, you will either need to provide additional insulation internally to reduce the U value or will need to increase insulation in the other elements to compensate. 150mm cavities are now quite common on new builds.

3. How will excessively glazed extensions be affected?

The ability to justify excessively glazed extensions by using either an area-weighted U value calculation or carbon emission calculations remains in the guidance (paragraphs 10.9 and 10.10 of Approved Document L vol 1).

4. What is the future for boilers?

The government have signalled their intention to have no new homes built after 2025 heated via gas boilers. Whether this will be the case will be dependent on future changes to the building regulations and will be subject to consultation, possibly in 2023. We do not know if this will be the case for the replacement of existing gas boilers.

#### Part O

5. Does it apply to new builds only or also extensions?

Part O applies to new residential buildings only.

#### **Transitional Provisions**

6. If an application has been submitted and the application fee paid, when do we need to start by?

On Full Plans and Building Notice applications received before 15th June 2022 work needs to have commenced before 15th June 2023 regardless of the status of the application (approved, conditionally approval or rejected).

### Disclaimer

This document is copyright of East Suffolk Council and has been reproduced and modified with their permission. Whist we have made efforts to ensure that the information given in this publication is accurate, the information should be regarded as a guidance only and as such Colchester Borough Council accepts no responsibility for any errors that may exist.

Colchester Borough Council has no affiliation with any of the products or manufacturers mentioned in this publication and remains completely impartial. You are free to choose different insulation types/brands as you see fit, provided that they are suitable for the intended use and meet the regulations.

We recommend designers seek further guidance from the relevant product manufacturers and use calculations and published construction details from manufacturers wherever possible.



**Colchester Borough Council** 

www.colchester.gov.uk